word文档IEEE_745浮点数标准

内容

标题:解读IEEE标准754:浮点数表示一、背景在IEEE标准754之前,业界并没有一个统一的浮点数标准,相反,很多计算机制造商都设计自己的浮点数规则,以及运算细节。那时,实现的速度和简易性比数字的精确性更受重视。直到1985年Intel打算为其的8086微处理器引进一种浮点数协处理器的时候,聪明地意识到,作为设计芯片者的电子工程师和固体物理学家们,也许并不能通过数值分析来选择最合理的浮点数二进制格式。于是Intel在请加州大学伯克利分校的WilliamKahan教授──最优秀的数值分析家之一来为8087FPU设计浮点数格式;而这个家伙又找来两个专家来协助他,于是就有了KCS组合(Kahn,Coonan,andStone)。他们共同完成了Intel的浮点数格式设计,而且完成地如此出色,以致于IEEE组织决定采用一个非常接近KCS的方案作为IEEE的标准浮点格式。目前,几乎所有计算机都支持该标准,大大改善了科学应用程序的可移植性。二、表示形式从表面上看,浮点数也是一串0和1构成的位序列(bitsequence),并不是三头六臂的怪物,更不会咬人。然而IEEE标准从逻辑上用三元组{S,E,M}表示一个数N,如下图所示:N的实际值n由下列式子表示:其中:★n,s,e,m分别为N,S,E,M对应的实际数值,而N,S,E,M仅仅是一串二进制位。★S(sign)表示N的符号位。对应值s满足:n>0时,s=0;n<0时,s=1。★E(exponent)表示N的指数位,位于S和M之间的若干位。对应值e值也可正可负。★M(mantissa)表示N的尾数位,恰好,它位于N末尾。M也叫有效数字位(sinificand)、系数位(coefficient),甚至被称作“小数”。三、浮点数格式IEEE标准754规定了三种浮点数格式:单精度、双精度、扩展精度。前两者正好对应C语言里头的float、double或者FORTRAN里头的real、double精度类型。限于篇幅,本文仅介绍单精度、双精度浮点格式。★单精度:N共32位,其中S占1位,E占8位,M占23位。★双精度:N共64位,其中S占1位,E占11位,M占52位。值得注意的是,M虽然是23位或者52位,但它们只是表示小数点之后的二进制位数,也就是说,假定M为“010110011...”,在二进制数值上其实是“.010110011...”。而事实上,标准规定小数点左边还有一个隐含位,这个隐含位通常,哦不,应该说绝大多数情况下是1,那什么情况下是0呢?答案是N对应的n非常小的时候,比如小于2^(-126)(32位单精度浮点数)。不要困惑怎么计算出来的,看到后面你就会明白。总之,隐含位算是赚来了一位精度,于是M对应的m最后结果可能是"m=1.010110011...”或者“m=0.010110011...”三、计算e、m首先将提到令初学者头疼的“规格化(normalized)”、“非规格化(denormalized)”。噢,其实并没有这么难的,跟我来!掌握它以后你会发现一切都很优雅,更美妙的是,规格化、非规格化本身的概念几乎不怎么重要。请牢记这句话:规格化与否全看指数E!下面分三种情况讨论E,并分别计算e和m:1、规格化:当E的二进制位不全为0,也不全为1时,N为规格化形式。此时e被解释为表示偏置(biased)形式的整数,e值计算公式如下图所示:上图中,|E|表示E的二进制序列表示的整数值,例如E为"10000100",则|E|=132,e=132-127=5。k则表示E的位数,对单精度来说,k=8,则bias=127,对双精度来说,k=11,则bias=1023。此时m的计算公式如下图所示:标准规定此时小数点左侧的隐含位为1,那么m=|1.M|。如M="101",则|1.M|=|1.101|=1.625,即m=1.6252、非规格化:当E的二进制位全部为0时,N为非规格化形式。此时e,m的计算都非常简单。注意,此时小数点左侧的隐含位为0。为什么e会等于(1-bias)而不是(-bias),这主要是为规格化数值、非规格化数值之间的平滑过渡设计的。后文我们还会继续讨论。有了非规格化形式,我们就可以表示0了。把符号位S值1,其余所有位均置0后,我们得到了-0.0;同理,把所有位均置0,则得到+0.0。非规格化数还有其他用途,比如表示非常接近0的小数,而且这些小数均匀地接近0,称为“逐渐下溢(graduallyunderflow)”属性。3、特殊数值:当E的二进制位全为1时为特殊数值。此时,若M的二进制位全为0,则n表示无穷大,若S为1则为负无穷大,若S为0则为正无穷大;若M的二进制位不全为0时,表示NaN(NotaNumber),表示这不是一个合法实数或无穷,或者该数未经初始化。四、范例仔细研读第四点后,再回忆一下文章开头计算n的公式,你应该写出一个浮点编码的实际值n了吧?还不能吗?不急,我先给你示范一下。我们假定N是一个8位浮点数,其中,S占1位,E占4位,M占3位。下面这张表罗列了N可能的正数形式,也包含了e、m等值,请你对照着这张表,重温一下第四点,你会慢慢明白的。说实在的,这张表花了我不少功夫呢,幸好TeX画表格还算省事!这张表里头有很多有趣的地方,我提醒一下:★看N列,从上到下,二进制位表示是均匀递增的,且增量都是一个最小二进制位。这不是偶然,正是巧妙设计的结果。观察最大的非规格数,发现恰好就是M全为1,E全为0的情况。于是我们求出最大的非规格数为:

浏览:26
下载量:-
下载币:30
日期:2020-11-04
7
收藏
         投诉 / 报错