word文档知识点:概率论与数理统计

内容

12010年概率论与数理统计必考知识点一、随机事件和概率1、随机事件及其概率运算律名称表达式交换律ABBABAAB结合律CBACBACBA)()(ABCBCACAB)()(分配律ACABCBA)())(()(CABABCA德摩根律BABABAAB2、概率的定义及其计算公式名称公式表达式求逆公式)(1)(APAP加法公式)()()()(ABPBPAPBAP条件概率公式)()()(APABPABP乘法公式)()()(ABPAPABP)()()(BAPBPABP全概率公式niiiABPAPBP1)()()(贝叶斯公式(逆概率公式)1)()()()()(iijjjjABPAPABPAPBAP伯努力概型公式nkppCkPknkknn,1,0,)1()(两件事件相互独立相应公式)()()(BPAPABP;)()(BPABP;)()(ABPABP;1)()(ABPABP;1)()(ABPABP二、随机变量及其分布1、分布函数性质)()(bFbXP)()()(aFbFbXaP2、散型随机变量分布名称分布律0–1分布),1(pB1,0,)1()(1kppkXPkk二项分布),(pnBnkppCkXPknkkn,,1,0,)1()(高中数学知识点全_「高途课堂」全科提分,低至9元!广告高中数学知识点全,其实提分很简单!高途课堂名师授课,掌握各个学科提分技巧,查看详情>2泊松分布)(P,2,1,0,!)(kkekXPk几何分布)(pG,2,1,0,)1()(1kppkXPk超几何分布),,(nMNH),min(,,1,,)(MnllkCCCkXPnNknMNkM3、续型随机变量分布名称密度函数分布函数均匀分布),(baU其他,0,1)(bxaabxfbxbxaabaxaxxF,1,,0)(指数分布)(E其他,00,)(xexfx0,10,0)(xexxFx正态分布),(2Nxexfx222)(21)(xttexFd21)(222)(标准正态分布)1,0(Nxexx2221)(xttexFd21)(222)(三、多维随机变量及其分布1、离散型二维随机变量边缘分布jjijjiiipyYxXPxXPp),()(iiijjijjpyYxXPyYPp),()(2、离散型二维随机变量条件分布2,1,)(),()(iPpyYPyYxXPyYxXPpjijjjijiji2,1,)(),()(jPpxXPyYxXPxXyYPpiijijiijij3、连续型二维随机变量(X,Y)的分布函数xydvduvufyxF),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数分布函数:xXdvduvufxF),()(密度函数:dvvxfxfX),()(yYdudvvufyF),()(duyufyfY),()(5、二维随机变量的条件分布yxfyxfxyfXXY,)(),()(xyfyxfyxfYYX,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:1)(kkkpxXE连续型随机变量:dxxxfXE)()(统计硕士--海文超级特训营,高效抢分广告统计硕士,海文考研特训营全日制封闭式高端特训,5倍提升学习效率。查看详情>32、数学期望的性质(1)为常数C,)(CCE)()]([XEXEE)()(XCECXE(2))()()(YEXEYXEbXaEbaXE)()()()()(1111nnnnXECXECXCXCE(3)若XY相互独立则:)()()(YEXEXYE(4))()()]([222YEXEXYE3、方差:)()()(22XEXEXD4、方差的性质(1)0)(CD0)]([XDD)()(2XDabaXD2)()(CXEXD(2)),(2)()()(YXCovYDXDYXD若XY相互独立则:)()()(YDXDYXD5、协方差:)()(),(),(YEXEYXEYXCov若XY相互独立则:0),(YXCov6、相关系数:)()(),(),(YDXDYXCovYXXY若XY相互独立则:0XY即XY不相关7、协方差和相关系数的性质(1))(),(XDXXCov),(),(XYCovYXCov(2)),(),(),(2121YXCovYXCovYXXCov),(),(YXabCovdbYcaXCov8、常见数学分布的期望和方差分布数学期望方差0-1分布),1(pBp)1(pp二行分布),(pnBnp)1(pnp泊松分布)(P几何分布)(pGp121pp超几何分布),,(nMNHNMn1)1(NmNNMNMn均匀分布),(baU2ba12)(2ab正态分布),(2N2指数分布)(E121五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2XDXE对于任意0有2)(})({XDXEXP或2)(1})({XDXEXP数学学习与研究--数学学习与研究杂志网站首页广告数学学习与研究由本省数学会主办,全文录入数据库。数学学习与研究杂志在线投稿,查看详情>42、大数定律:若nXX1相互独立且n时,niiDniiXEnXn11)(11(1)若nXX1相互独立,2)(,)(iiiiXDXE且Mi2则:niiPniinXEnXn11)(),(11(2)若nXX1相互独立同分布,且iiXE)(则当n时:PniiXn113、中心极限定理(1)独立同分布的中心极限定理:均值为,方差为02的独立同分布时,当n充分大时有:)1,0(~1NnnXYnkkn(2)拉普拉斯定理:随机变量),(~)2,1(pnBnn则对任意x有:xtnxxdtexpnpnpP)(21})1({lim22(3)近似计算:)()()()(11nnannbnnbnnXnnaPbXaPnkknkk六、数理统计1、总体和样本总体X的分布函数)(xF样本),(21nXXX的联合分布为)(),(121knknxFxxxF2、统计量(1)样本平均值:niiXnX11(2)样本方差:niiniiXnXnXXnS122122)(11)(11(3)样本标准差:niiXXnS12)(11(4)样本k阶原点距:2,1,11kXnAnikik(5)样本k阶中心距:nikikkkXXnMB13,2,)(1(6)次序统计量:设样本),(21nXXX的观察值),(21nxxx,将nxxx21,按照由小到大的次序重新排列,得到)()2()1(nxxx,记取值为)(ix的样本分量为)(iX,则称)()2()1(nXXX为样本),(21nXXX的次序统计量。),min(21)1(nXXXX为最小次序统计量;),max(21)(nnXXXX为最大次序统计量。3、三大抽样分布(1)2分布:设随机变量nXXX21,相互独立,且都服从标准正态分布)1,0(N,则随机变量222212nXXX所服从的分布称为自由度为n的2分布,记为)(~22n统计研究即投即审_统计研究1-2个月见刊—保正刊!广告统计研究高效发表,正规安全1-3天审稿2个月见刊内部渠道发表快捷。查看详情>5性质:①nnDnnE2)]([,)]([22②设)(~),(~22nYmX且相互独立,则)(~2nmYX(2)t分布:设随机变量)(~),1,0(~2nYNX,且X与Y独立,则随机变量:nYXT所服从的分布称为自由度的n的t分布,记为)(~ntT性质:①)2(,2)]([,0)]([nnnntDntE②222)(21)1,0()(limxneNnt(3)F分布:设随机变量)(~),(~2212nVnU,且U与V独立,则随机变量2121),(nVnUnnF所服从的分布称为自由度),(21nn的F分布,记为),(~21nnFF性质:设),(~nmFX,则),(~1mnFX七、参数估计1、参数估计(1)定义:用),,(21nXXX估计总体参数,称),,(21nXXX为的估计量,相应的),,(21nXXX为总体的估计值。(2)当总体是正态分布时,未知参数的矩估计值=未知参数的最大似然估计值2、点估计中的矩估计法:(总体矩=样本矩)离散型样本均值:niiXnXEX11)(连续型样本均值:dxxxfXEX),()(离散型参数:niiXnXE1221)(3、点估计中的最大似然估计最大似然估计法:nXXX,,21取自X的样本,设)]()()[,(~PXXPxfXi或则可得到概率密度:])()(),,([),(),,,(1121121niiniinnniinPxXPxXXXXPxfxxxf或基本步骤:①似然函数:])([),()(11niiniiPxfL或②取对数:niiXfL1),(lnln③解方程:0ln,,0ln1kLL最后得:),,(,),,,(212111nkknxxxxxx

浏览:26
下载量:-
下载币:5
日期:2021-04-30
5
收藏
         投诉 / 报错